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The wave-vector- and frequency-dependent dielectric function E(k, o 0 of 
an electron gas can be expressed in terms of Lindhard's function and a 
complex local field correction G(k, w) which incorporates all the effects 
of dynamic exchange and correlation in the system. The general properties 
of G(k, o~) are discussed, in particular the static and high-frequency limits. 
It is shown that for small k, both G(k, 0) and G(k, co) vary as k 2, with 
different coefficients, but both determined by the average kinetic and 
potential energies per particle. For  large k, G(k, co) varies again as k 2 and 
it is argued that the same holds true for G(k, 0), with both coefficients 
(though different) determined by the average kinetic energy per particle. 
General formulas for the plasma dispersion relation and damping, involv- 
ing, respectively, the real and imaginary parts of G(k, ~), are given. The 
term in the plasma frequency which is proportional to k 2 is given directly 
in terms of the average kinetic and potential energies per particle, a result 
true at all temperatures. A calculation of the frequency dependence of 
G(k, ~o), starting from the exact equation of motion for the particle-hole 
operator arid employing a decoupling approximation introduced previously 
by Toigo and Woodruff, is presented. Explicit results for G(k, ~o) are 
obtained for small k and all oJ. The complete expressions for G(k, 0) and 
G(k, Go) in this approximation have been obtained and are plotted. 
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1. I N T R O D U C T I O N  

A quantity which is the key to understanding many of the properties 
of metals that are due to the effects of electron-electron interactions is the 
wave-vector- and frequency-dependent dielectric function e(k, ~o). Knowl- 
edge of this quantity allows one to describe and calculate such properties 
as the density fluctuation excitation spectrum, the ground state energy, the 
screening of external charges, the longitudinal electrical conductivity, etc. 
The model which one usually employs in the calculation of ~(k, a~) is one in 
which the ions are replaced by a uniform, neutralizing background of positive 
charge, the assumption being that e(k, a,) is not essentially altered by the re- 
placement of the discrete ion lattice with a uniform background. 

Following the pioneering work of Bohm and Pines, C1~ which led to the 
development of the random phase approximation (RPA), an expression for 
e(k, oJ) corresponding to the RPA was first obtained by Lindhard. (2~ This has 
since been applied in many calculations and is discussed in detail in several 
books and review articles. (3-9~ The RPA provides a good description of 
long-wavelength plasma oscillations and screening phenomena but leads to 
some unphysical features of the pair distribution function in the range of 
metallic densities (2 ~< r~ ~< 6). This arises from the failure of the RPA to 
take account of short-range correlations in the motions of the electrons. A 
first improvement upon the RPA was introduced by Hubbard (1~ in the form 
of a function G(k), which has come to be called the local field correction, to 
take into account exchange and correlation effects neglected in RPA. The 
function G(k) has since been extensively used in calculations of metallic 
properties m-la) and many forms of G(k) have been proposed (for a review 
see Shaw ~4) and Appendix A of this work). The importance of G(k) for the 
calculation of metallic properties has been thoroughly discussed and empha- 
sized by Shaw. (1~) 

More recently it has been recognized that the local field correction 
should also be a function of frequency and a general expression for E(k, w) 
in terms of Lindhard's function and the dynamic local field correction 
G(k, oJ) has been given5 .5'16~ However, thus far calculations have been 
restricted to the static limit co = 0. 

In this work we discuss some general properties of the complex function 
G(k, ~o) and present a calculation of the frequency dependence within a well- 
defined approximation. In Section 2 we first review some general relations 
involving the density-density response function x(k, ~),(17) which is linked 
directly to the dielectric function E(k, co). (6) In Section 3 we introduce a 
formally exact representation for x(k, oJ) which may be termed a generalized 
mean field representation ~18) since it is of the same form as the one used in 
all mean field approximations (MFA) (reviewed in Appendix A) except that 
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the effective potential is a complex quantity which is both wave number and 
frequency dependent; the latter is identified with v(k)[1 - G(k, oJ)], where 
v(k) = 4r;e2/k 2. We also discuss in Section 3 another dielectric function 
frequently employed in the calculation of metallic properties, namely the 
one corresponding to the effective interaction between an electron and a 
test charge and denoted by ~e(k, o~). (14) Both ~(k, ~o) and ~e(k, r are expressed 
in terms of G(k, o)), which can thus be considered the basic unknown quantity 
of the theory. Some basic properties of G(k, co) are discussed in Section 4, 
in particular the static and high-frequency limits, and it is pointed out that 
the real and imaginary parts of G(k, co) are connected by a Kramers-Kronig 
relation. The real part of G(k, oJ) enters into the plasma dispersion relation 
while the imaginary part of G(k, co) occurs in the damping; the general 
formulas are given in Eqs. (56a)-(56c) and (57). 

In Section 5 we present a calculation of G(k, oJ) using a decoupling 
method employed by Toigo and Woodruff (15) on the equation of motion for 
the particle-hole operator. Their decoupling has the virtue that it conserves 
the third frequency moment of the imaginary part of x(k, oJ) as well as the 
f-sum rule. (6) A simple " t r i ck"  allows us to obtain results which are much 
simpler than those of Toigo and Woodruff, (15) who restricted calculations 
to the static limit co = 0 because of the complexity involved. 

In Section 6 we briefly discuss a formula for the ground state energy 
of the electron gas corresponding to the Toigo-Woodruff decoupling followed 
by the Hartree-Fock factorization. The calculation of the ground state 
energy on the basis of this formula is, however, not a simple undertaking and 
has not been carried out here. 

2. D E F I N I T I O N S  A N D  G E N E R A L  R E L A T I O N S  

As a means of introducing the notation, we shall here list the basic 
quantities, relations, and properties defining our system. We consider a 
system of N electrons in a cubical box of volume fl (with periodic boundary 
conditions), immersed in a uniform, neutralizing background of positive 
charge of density ]elN/~ - lelp. The Hamiltonian of this system is given 
by(4) 

p2 1 
+ 2-~k~o v ( k ) [ p ( k ) p ( - k ) - N ]  (la) 

5 = 1  

where p(k) is the density fluctuation operator defined as 

N 

o(k) -- ~ exp(- ik . r , )  (2a) 
i = l  

and v ( k ) =  4~-e2/k 2 is the Fourier transform of the Coulomb potential, 
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v ( r )  = e2/r.  For our purposes later on it will be useful to write the Hamil- 
tonian also in second quantized form, involving the creation and annihilation 
operators a+o and ako, respectively, for a particle of momentum hk and spin 
orientation e. In second quantized form the Hamiltonian is 

1 ~ v ( k ) [ p ( k ) o ( _ k ) _ N  ] (lb) H = ~k~ h~~176176 + ~ k~o 

where ~ o ( k )  = t i k2 /2m,  and the density fluctuation operator p(k) is given by 

p(k) = ~ a,~oa,a + k~ (2b) 
q a  

N = p(k = 0) is the total number of particles operator. 
As usual, we shall work in the Heisenberg picture with time-dependent 

operators A ( t )  defined by A ( t )  = [ e x p ( i t H / h ) ] A ( O ) [ e x p ( - i t H / h ) ] .  

The basic correlation function, which contains all the information about 
the density fluctuations in the system, is the time-dependent density-density 
commutator 2"(k ,  t - t ' ) ,  defined by (17) 

2"(k ,  t - t ' )  = ( 1 / 2 h f 2 ) ( [ p ( k ,  t ) ,  p ( - k ,  t ' )])  (3) 

where the angular brackets denote an equilibrium thermal ensemble average 
appropriate to the system Hamiltonian (1). We are considering a homogeneous 
electron gas, i.e., we are assuming our system to have translational and 
rotational invariance; thus 2" depends only on the absolute value of k. 
We observe that 2"(k ,  t - t ' )  is a purely imaginary function and an odd 
function of t - t ' .  Its Fourier transform, the spectral function 

2"(k ,  r = dt  e i~(t- t ' )2"(k , t - t ' )  (4) 
oo 

is a real, odd function of co with the important property (17) 

o~"(k, ~o) >1 0 (5) 

which, as we shall see, has an important consequence and bearing for this 
work. The above property is closely connected with the fact that the energy 
transfer per unit time from an external probe to a stable system in thermo- 
dynamic equilibrium is a nonnegative quantity. (6,1v) 

In addition to 2"(k ,  t - t ' ) ,  we shall also introduce the retarded density- 
density response function 2(k, t - t '), a real function defined as (17) 

y:(k, t - t ' )  = 2i O(t - t ' ) 2 " ( k ,  t - t ' )  (6) 

where O(t - t ' )  is the unit step function (which vanishes for negative values 
of its argument). Although the above function contains no more information 
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than 2"(k ,  t - t ' ) ,  it is a useful quantity to define since it describes the linear 
response of the system to an external probe or potential which couples to the 
density fluctuations in the system. Specifically, the Fourier transform of the 
quantity (6), x(k, co), gives the linear response (p(k, co)} of the number 
density fluctuation to an external potential Uext(k, o)) or test charge of 
density zpe=(k, co) via the relations 

<p(k, co)) = - x ( k ,  co)eUe=(k,  co) (7a) 

= - x ( k ,  co)(4rrez/k2)pext(k, co) (Tb) 

We note that the definition (6) implies that x (k ,  co) can be expressed entirely 
in terms of its imaginary part, the spectral function X"(k,  co): 

F x (k ,  o)) = d t  e ~(+ - t')2i O(t - t ' )2"(k ,  t - t ' )  (8a) 

[ l  "+~ do)' x'~k,r co) + i x " (k ,  co) (8b) = P . . . .  
m 71" c o  - -  c o  

The first term on the right of (Sb) is a principal value (P) integral, which we 
shall also denote by x ' ( k ,  co); it is the real part of the complex function 
x(k, co) and is an even function of co. 

The function x(k ,  o)) is directly related to some dielectric functions that 
play an important role in the theory of metals. In particular, these dielectric 
functions enter directly into calculations of screening effects and charge 
distributions around impurities and the calculation of phonon frequencies 
in metals. (+'+) The ordinary longitudinal dielectric function or dielectric 
function for a test charge (appropriate to test-charge-test-charge interactions), 
which we have denoted by e(k, co), is derived using Poisson's equation for an 
electron system and is defined as follows(6): 

1 e(p(k, o))> U{k, co) 
~(k, co------) = 1 + ZPext(k, o)) = Uex~(k, co) (9) 

where 

U(k ,  co) = Ue=(k, co) + (4rre /k2)(p(k ,  o))} (lO) 

is the total effective potential acting on a test-charge particle in the system; 
the total effective electric field E(k, co) acting on this particle is E(k, co) 
= - i kU (k ,  o)). From Eq. (7) one then obtains in linear response theory the 
following relation (6) between E(k, co) and x (k ,  co): 

1/E(k, co) = 1 -- v( ,k)x(k,  co) (11) 
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3. AN EXACT GENERALIZED M E A N  FIELD REPRESENTATION 

It is somewhat more convenient to use complex frequencies z and to 
deal with the complex density-density response function x(k, z) defined in 
terms of the spectral function X"(k, oJ) by (17~ 

fo 2(k, z) = dt e~t2(k, t), Im z > 0 (12a) 

(~ do~ x"(k, 0,) 
(12b) 

3 - c o  77" O J - - Z  

The integral (12b) serves to define x(k, z) in both the upper and lower halves 
of the complex z plane as an analytic function off the real axis. The physical 
response function, which we have denoted x(k, ~o), represents the boundary 
value as z approaches ~ on the real axis from above, i.e., 

x(k, o~) - lim x(k, ~o + &) = x'(k, ,,-,) + ix"(k, oJ) (13) 

We consider in this section a formally exact representation for x(k, z) 
and e(k, co). This representation has been introduced in previous work (18~ 
where it was applied to the calculation of scattering functions and to the 
description of collective modes and their damping in classical liquids. For 
the electron gas this representation will be given in the form 

xo(k, z) (14) 
x(k, z) = 1 + [v(k) + r Z)ko(k, z) 

or equivalently, 
x-~(k,  z) = xoX(k, z) + v(k) + r z) (15) 

This equation has the form of the Dyson equation well known in the theory 
of Green's functions. (19-21) Xo(k, z) is the density-density response function 
for a system of noninteracting particles; the general expression is 

1 n~)(q + �89 -- n~)(q - �89 (16) 
xo(k, z) = ~ ~ ,  z -- (hq. k/m) 

q a  

where n~(q )  is the Fermi distribution function. The complex, frequency- 
and wave-number-dependent potential r z) here plays the role of the 
self-energy. When r z) is replaced by zero, (14) gives the expression for 
the response function in the RPA. In the case when r z) is approximated 
by a real, frequency-independent function r (14) reduces to the expression 
for the response function obtained in static mean field approximations 
(MFA), which are reviewed in Appendix A. We shall therefore refer to (14) 
as an exact generalized mean field representation. (~8~ This is not to be con- 
fused with the generalized RPA discussed in Refs. 6 and 9, which is also a 
static MFA type of theory. Note that the long-range correlations charac- 
teristic of the electron system have been taken into account explicitly by 
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separating off the Coulomb interaction v(k). Thus r z) represents the 
collisional part of the total effective interaction between density fluctuations. 

Before going on to show this in more detail and giving the precise 
physical meaning conveyed by r z), we first note the following important 
fact. Not only z(k, z) but also X-l(k, z) is an analytic function of z off the 
real axis; for X-~(k, z) this fact can be proved (17~ from the property (5). It 
therefore follows from (15) that r z) is also analytic off the real axis. 

We define 

r oJ) _~ lira r oJ + ie) = r o~) + ir ~o) (17) 
E ' ~ O  + 

In terms of r w) the dielectric function e(k, oJ) defined by (11) is given by 

v(k)xo(k, ~) 
e(k, o~)= 1 + 1 + r oOxo(k, co) (18a) 

v(k)xo(k, oJ) 
= 1 + I - G(k, w)v(k)xo(k, w) (18b) 

where we have defined r w) = -v(k)G(k,  w) to bring (18a) into the form 
suggested by the work of  Hubbard. a~ Xo(k, w) is the density response 
function for a noninteracting electron gas, or free electron polarizability, 
and G(k, w) is a complex function describing all the dynamic exchange and 
short-range correlation effects due to the Coulomb interaction of the electrons. 
If  the function G(k, ~,,) is replaced by zero, Eq. (18b) gives the dielectric 
function in the RPA first obtained by Lindhard ~2~ and discussed extensively 
in Ref. 6. In Hubbard's original work, r176 as well as in the static MFA 
expressions considered since (and discussed in Appendix A), the complex 
function G(k, w) was replaced by a real, frequency-independent function 
G(k). The expression (18b) for e(k, w) has since appeared in the work of  
several authors~15'~6~; however, calculations thus far have only been done 
for the static case r = 0. 

In addition, and closely related to e(k, oJ), there is another dielectric 
function frequently employed in the calculation of some metallic properties.~2a~ 
This latter function, which we shall denote by ~e(k, w), is in fact just a useful 
construct to enable one to describe an effective interaction between an 
electron and a test charge. Thus the function ~e(k, w) relates the total potential 
which acts on an electron in the conduction band to the bare crystalline 
potential. A derivation of the function ~(k, w) has recently been given by 
Shaw, {1~ to whom we refer for further details and earlier references. Since 
the notation chosen by Shaw might lead to some confusion, 3 we shall briefly 

3 In particular, Shaw's function x(q, w) (see Ref. 14) is not the same as ours, which is 
defined by Eqs. (7) and (8), in accordance with the notation of Kadanoff and Martin r 
and Pines and Nozibres. ~e~ The function in Shaw's notation which corresponds to our 
function x(q, w) is -R(q, oJ) [Eq. (2.11) of Ref. 14]. 
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indicate the relations in our notation. First, one defines an effective potential 
V(k, o~) [different from U(k, co)] to describe the electronic density response 
in the presence of  the external potential Uo~t(k, o~) by the relation [compare 
Eq. (7)1 

(p(k, oJ)) = - x o ( k ,  oJ)eV(k, co) (19) 

and, analogously to Eq. (9), one defines ~e(k, ~o) by setting 

1/~e(k, o~) = V(k, r ~o) (20) 

Notice that in defining V(k, co) by (19) we have lumped all the effects of  the 
interaction, i.e., all contributions due to exchange and correlations, into 
V(k, o~). In the RPA where exchange and short-range correlations are 
neglected, the effective potential V(k, co) is the same as U(k, o~), the effective 
potential seen by a test charge in the presence of U~xt(k, ~o) [cf. Eq. (10)]. 
Comparison of Eqs. (7) and (19) results in the expression 

1/~(k ,  a,) = x(k,  co)/xo(k , r (21) 

Using (11), one obtains the relation between ~(k, ~o) and e(k, oJ): 

~,(k, o)) = v(k)xo(k, co)E(k, ~o) 
e(k, ~) - 1 (22) 

By substituting expression (18b) for E(k, w) we obtain a formally exact 
expression for ~,(k, oJ) in terms of the basic unknown function G(k, oJ): 

~(k, o)) = 1 + v(k)[1 - 6(k ,  oJ)lx0(k, co) (23) 

Note that in RPA, ~e(k, ~o) is the same as e(k, ~o). 
From Eqs. (19), (20), (7), and (10) it follows that the effective potential 

V(k, r acting on an electron in the presence of Uo~t(k, co) is given by 

eV(k ,  co) = eUoxt(k, oJ) + v(k)[1 - G(k, ~o)](p(k, ~o)} 
= eU(k ,  oJ) - v(k)G(k,  ~o)(p(k, oJ)} (24) 

where U(k, co) has been defined in (10) as the effective potential which would 
act on a test charge particle in the presence of U~xt(k, ~o). The quantity 
Vxe(k, oJ)-= V ( k , w ) -  U(k,~o), which describes the difference in the 
effective potentials acting on an electron and on a test charge in the presence 
of an external test charge, is thus linked directly to G(k, o~): 

e V,~(k, ~o) = -v(k)G(k,  r o~)} (25) 

which is a natural generalization of the result obtained by Shaw. (1r In the 
RPA where G(k, r is replaced by zero, the above quantity vanishes. The 
quantities Vxr ~o) and G(k, co) thus describe in an exact fashion the extent 
to which the behavior of an electron is influenced by dynamic exchange and 
correlation effects arising from the interaction of the particles. 
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In treatments concerned with the application of  the dielectric functions 
to calculations of  metallic properties,  the relation (19) is usually obtained or 
quoted as a first-order per turbat ion result. By adopt ing (19) as the definition 
o f  V(k, ~o) we obtain a formally exact f ramework in which the two dielectric 
functions E(k, o)) and ~e(k, oJ) can both  be expressed in terms o f  a single 
unknown function, G(k, oJ). 

It  is of  some interest to note  also the expression for the effective electric 
field acting on an electron, Ee~(k, oJ) = - i k V ( k ,  oJ). In real space-t ime this 
effective electric field is given by 

eEoff(r, t) = -V[eUext(r ,  t)] + dar ' dt' [Vv(r - r ') 3(t - t ' )  
c o  

+ V~(r  - r ' ,  t - t ' ) ][(p(r ' ,  t ' ) )  - p] 

where ~(r,  t) is the real, spherically symmetric potential  defined by 

(26a) 

f d3k (| d~o �9 (r, t) = (2~r)3j_ ~ ~ r w) exp( ik . r  - ioJt) 

f d3k v ( k ) f /  do~ = - ~ ~o ~ G(k, o~) exp( ik . r  - &ot) (27) 

Because o f  the analytic properties of  r z) discussed above, it follows 
that  q)(r, t)  = 0 for  t < 0, i.e., ap(r, t) is a " r e t a r d e d "  funct ion like 2(k, t). 
Hence (26a) can be rewritten 

eEef~(r, t) = -V[eUext(r ,  t)] + f dar ' Vv(r r ' )[(p(r ' ,  t ) )  P] 

f ;  + d3r ' dt' Vdp(r - r', t - t')[(p(r', t ' ) )  - p] 
a o  

(26b) 

Here it has been assumed that  the external potential  has been switched on 
adiabatically at t = - o 9 .  F rom (26) we clearly see why q)(r, t) represents a 
local field correction to the RPA where the last term is absent. I f  there is an 
electron at the position (r, t) where we are calculating the effective electric 
field, then the electron density in the ne ighborhood of  (r, t) is decreased by 
dynamic correlat ion effects. The RPA overestimates the charge displacement 
because it takes no account  of  the local reduct ion in density. Note  that  
�9 (r, t) can be termed a memory  function. The last term in (26b) says that  
in establishing an effective field at (r, t), the system has a memory  for the 
effect of  the average density at a point  r '  at some pr ior  time t'. This is 
precisely what  one expects for  short-range effects which are mediated by the 
collisions between the particles. 
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4. GENERAL PROPERTIES OF G(k,~)  

First let us note explicitly the relation in the static limit co = 0 between 
the static dielectric function e(k, 0) and G(k, 0): 

v(k)xo(k) ( 2 8 )  
c ( k ,  O) - 1 = 1 - G(k, O)v(k)xo(k) 

In the long-wavelength limit e(k, 0) is related to the isothermal compressibility 
K~. by the compressibility relation or sum ruld6~: 

47re2 02 Kr k2r KT 
lim e(k, 0 ) =  1 + k ~  = 1 + k2K} m (29) 
k ~ 0  

where K} m is the free particle compressibility and krr  is defined by k i t  = 
4~e202K~~ at zero temperature this reduces to the Fermi-Thomas valud4~: 
k(2~ 6~pe2/E o 3w~2/VF 2 (VF = hkF/rn is the free particle velocity at the F T  ~ = 

Fermi surface). It is an important requirement for all calculations of the lattice 
dynamics of metals that the static dielectric function satisfies the above 
relation, a3~ 

Equations (28) and (29) imply that the static local field correction at 
long wavelengths is given by 

lim G(k, O) = yok2/k~ 2 (30) 
k ~ O  

where 7'o is the dimensionless factor 

kF2 ( 1 1 ) (31) 
Y o  - mojv2 p~<~o) PKT 

and we have used the fact that l im~0 xo(k) = p2K~~ The fact that for small 
k, G(k, 0) is related to the compressibility in the above manner seems to 
have first been emphasized by Geldart and Vosko324~ 

At this point it is useful to recall the virial theorem and its connection 
with the compressibility. These have played an important role in some recent 
treatments of electron correlations at metallic densities32s,2m The general 
form of the virial theorem for a system of particles interacting only via 
Coulomb forces is given by Landau and Lifshitz~27~; it has also been the 
subject of a thorough quantum mechanical investigation by Argyres3 TM For 
the homogeneous electron gas the virial form for the pressure reads ~25~ 

p = Zp<KE > _ ~p2 f dar [g(r) - 1]rv'(r) 

+ ~p2 f dar [g(r) - 1]v(r) (32a) ~o<KE> 

where <KE> is the average kinetic energy per particle and g(r) is the radial 
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distribution function. The last term is proportional to the average potential 
energy per particle (V) ,  and hence 

p = �89 + <V>] (32b) 

which is the general form found in Ref. 27. 
From the above equation one obtains the following expression for 

K T  (25) : 

1 8p 2 8  1 8  
pKT = ~ T = 3 8p [p<KE>] + -j -~p [p< lZ>] (33) 

Substituting (33) into (31), we can write yo as 

Yo = r~o ~ '  + r g '  (34) 
where 

yt0K ~,) 2kv 2 0 
3m~% 2 8p [p(<KE> - <KE)o)] (35) 

r,oV,= _k/f  [ 1 3 Jo dr r g(r) - 1 + ~ p - - ~ p  j (36) 

The quantity (KE)o is the average kinetic energy per particle for the non- 
interacting system. Thus the static local field correction and static dielectric 
function in the long-wavelength limit are related directly to the average 
kinetic and potential energies per particle. The relations (32)-(36) for the 
ground state system are discussed further in Appendix B. 

Next let us note that x-1( k, z) has the following asymptotic expansion 
for large z: 

1 [ z 2 - M 3  (M3/M1)~-MS/MI ] 
X- ~(k, z) ,.~ -M--~ ~ + z 2 + ... (37) 

where the quantities M,~(k) are the frequency moments of the spectral 
function x"(k, co). These can be obtained as equal time commutators using 
the defining equations (3) and (4): 

)1} -~  ~ ~ i ~  p(k, t), p ( - k ,  t) 

(38a) 

1 . 8 m 

(385) 
where m is an integer between zero and n. Only the odd n frequency moments 
survive, and because of (5) the M~(k) are nonnegative quantities. The right- 
hand sides of (38a) and (38b) can be evaluated by making repeated use of 
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the Heisenberg equation of motion and the equal time commutation rela- 
tions. Making use of (38b) with an appropriate integer m, rather than (38a), 
usually results in considerable simplification and time-saving in working 
out the equal time commutators, a fact which is sometimes overlooked 
(cf. Section 5). 

The moments which have thus far been obtained are Ml(k) and 
Ma(k). (17"a~ The first-moment sum rule is 

Ml(k) = pk2/m (39) 

and the third-moment sum rule is (3~ 

Ma(k) = (pk2/m)[~Oo2(k) + 4O~o(k)(KE)/h + Q(k)] 
=_ (ok2 /m)o~3~(k ) (40) 

where Q(k) is a function defined below. Equations (39) and (40) are con- 
sequences and expressions of the local conservation laws for the particle 
density and longitudinal momentum density. This will be seen in the discussion 
of Section 5. 

The general expression for Q(k) can be found in Refs. 30 and 31. For an 
electron gas moving in a uniform positive background, Q(k) is given by (a2~ 

Q(k) = (1/mf~) ~ ([.q)2[S(k + q) - S(q)] 
q~O 

= 0), 2 + I(k) (41) 

where S(q) is the static structure factor and c% 2 = 4~rpe2/m is the square of 
the plasma frequency. 

The quantity I(k) can be expressed as 

;? I(k) = (e2/m~) dqq2[S(q) - 1]J(q, k) (42) 

with 

5 0 2  k ( q  2 ) 2 1 n q + k  I 
J(q ,k)  = 6 2k 2 +4-q ~ -  1 ~ (43) 

a function only of the ratio q/k, positive for all values of this ratio and 
monotonically decreasing. In the limits k--~ 0 and k - +  0% the function 
I(k) behaves as ~32> 

I(k) = (4k2/15m)<V), k -~- 0 (44) 

I(k) = ~ oJv2[g(0) - 1], k --> oo (45) 

where (V)  is the potential energy per particle, expressed here as 

1 f daq ( V )  = ~ ~ v(q)[S(q) - 1] (46) 
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and g(0) is the radial distribution function evaluated at r = 0; in Appendix 
A we argue that g(0) should be zero. However, we shall continue to use 
g(0) in the corresponding formulas to serve as a reminder of  the origin of  
this term. 

Since an asymptotic expansion similar to (37) holds also for xgl(k,  z) 
[with the M,,(k) replaced by the corresponding noninteracting moments 
M~~ it follows from (15) that the quantity r z) has the following 
asymptotic expansion for large z: 

r z) ~ r174 - [al(k)/z 2] + ... (47) 

where 

r =- r oo) -- -v(k)G(k, oo) 

3 ~ f  G(k, ~ )  - 2k2 ( (KE)  - (KE)o) - ~ dqq2[S(q) - 1]J(q, k) 
/Y/6op 2 

(48) 

is the expression for the local field correction in the limit of very large 
frequencies. The quantity at(k) involves the interaction parts of both M3(k) 
and Ms(k). 

It is useful to note explicitly the limiting forms of G(k, ~ )  for both 
small and large k. In the limit k -+ 0 one has, using (44), 

where 7oo is given by 

lira G(k, oo) = 7~k2/kF 2 (49) 
k ~ O  

kv2 [2( (KE)  - (KE)o)  + 4 ( V ) ]  (50) 
7 ~ romp2 

Thus for small k both the static and high-frequency limits of the local field 
correction are determined by the average kinetic and potential energies per 
particle. 

In the limit of  large k one has, using (45), 

lim G(k, oo) = 2k2 2 ~ - m~ 2 ( (KE)  - (KE)o)  + ~ [1 -- g(0)] (51) 

At this point it is well to recall the inequality (a2) ( K E )  >/ (KE)o ,  which 
holds rigorously for the ground state (and probably for all temperatures). 
Hence the high-frequency limit G(k, oo) varies with k 2 for both k ---> 0 and 
k---> oo. 
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Because r z) - r is analytic off the real axis and vanishes for 
large z as 1/z 2, we can write a spectral representation (lm 

r z) - r = | ~ r  d60r 60) (52) 
J 

where r 60) = Im r 60) is a real, odd function of 60. We shall see 
below that r 60) gives essentially the collisional damping of the density 
fluctuations in the electron gas. 

Equation (52) implies the following Kramers-Kronig relation between 
the real and imaginary parts of G(k, 60), denoted respectively by G'(k, 60) 
and G"(k, 60): 

f G"(k oJ'~ 
oo d60' 

G'(k, 60) - G(k, ~ )  = P _ ~_~, 2 =, 
--co Tt 60 --60 

(53) 

An immediate consequence of (53) is obtained by taking 60 = 0, resulting 
in the sum rule 

/. oo d,,  G"(k, 6 0 )  
G(k, O) - G(k, oo) = P | =-- 

d - -oo  71" r 
(54) 

This is a fundamental sum rule satisfied by G"(k, ,o). For small k it immediately 
follows from (30) and (49) that 

f ~ do, G"(k, 60) ) k_~ 
lim P - (~o - 7~o 
/~-~0 --oo ~ 60 

(55) 

The real and imaginary parts of G(k, 60) enter directly into the dispersion 
relation and damping of the plasma oscillations. Since in general only the 
long-wavelength plasma oscillations satisfy the condition of small damping, 
we give here only the relations valid for the limit k ---> 0. The real part of the 
plasma frequency oF(k) can be shown to be given by 

~ , ~ ( k )  = ~ [ i  - a ' ( k ,  ~,(k))] + ~o(k) +.-. (56a) 

k2 ) 2 k2(KE)~ + .-- 
-- wv 2 1 - 7 ~ - ~ v  2 + m (56b) 

where we have kept only the terms of order k 2. Here ,-~o(k) is the quantity 
defined by the third frequency moment (40) corresponding to the non- 
interacting system. Using Eq. (50) for 7~, we can rewrite (56b) as 

k2 (2(KE)+-~5 (V))+.-. 6 0 ~ ( k )  = o ~  ~ + m (56c) 
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Thus oJv(k) is related directly to the average kinetic and potential energies 
per particle. The imaginary part o)~(k), which describes the damping of the 
plasma oscillations, is given by 

~o,(k) = - . y  l_--)-~ Xo"(Z,, ~,) + a"(k, ~%) (57) 

The above expressions are entirely general. They apply to the classical limit 
as well as to the ground state of the electron gas. The last term in (56b) gives 
the RPA contribution, while the term 7~k2/k~ 2 gives the effect of the local 
field correction in the high-frequency limit under consideration. The first 
term on the right of (57) describes in general the Landau damping. In the 
ground state this term vanishes for wave numbers up to a critical value 
kc given by the equation o~p(kc) = kcvF + O)o(kc) and hence gives no con- 
tribution to the damping. The physical reason for this, as well as the nature 
of Landau type damping, are discussed fully in the book by Pines and 
Nozi~res (PN). (6~ In the classical limit, on the other hand, the Landau damp- 
ing term is no longer zero but exponentially small for k --> 0. The other term 
G"(k, ~op), will in general always lead to a damping for k r 0. Since it arises 
from the imaginary part of the dynamic local field correction and since the 
latter describes the short-range and memory effects associated with collisions, 
one can call the damping to which it gives rise "collisional damping." 

The relations discussed thus far are all rigorous consequences of the 
formalism introduced in this section. For  the remainder of this section, 
however, we wish to add some remarks of  a nonrigorous, speculative 
character concerning the static local field correction G(k, 0) and thereby also 
the static dielectric function e(k, 0). We have already seen that for small k, 
both G(k, 0) and G(k, oo) vary with k 2. Also, we have found that for large 
k, G(k, or) varies with k 2, with a coefficient determined by the difference 
( K E )  - (KE)o.  Now this latter quantity also enters the static local field 
correction factor yo [Eqs. (34), (35)]. By analogy with the corresponding 
kinetic energy contribution to G(k, oo) it is perhaps not unreasonable 
to suppose that the kinetic energy contribution to G(k, 0) is ,/~K~k2/k~ 
for all k. This is perhaps made more plausible by noting that the factor 
7~o ~E) reflects the difference between the true momentum distribution 
function and the noninteracting, Fermi distribution function. Since we have 
written the Dyson-like equation (15) in terms of Xol(k, z) rather than an 
unknown function describing the propagation in the interacting system, it 
should not be surprising to find that difference reflected in a corresponding 
contribution to the local field correction. 

For the potential energy contribution to G(k, 0) one can take a form 
derived by SchneideK 25~ and Vashishta and Singwi ~26~ and discussed in more 
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detail in Appendix A. This would lead to the following expression for 
a(k, 0): 

kF 2 -  k dr g(r) - 1 + ~ p j~(kr) 

=7<o~:~>k2 1 ( d3q k . q [  O S ( k - q ) ]  
kF2 20J(2~)3 q2 S(k - q) - 1 + p ~t~ 

(58) 
whereA(x) is the first-order spherical Bessel function. It is easily verified that 
for k -~ 0, (58) is consistent with Eqs. (30)-(36). On the other hand, for large 
k, (58) predicts 

lira G(k, O) = 7(0 X~) k2 1 ~g(O) k~ o~ kr ---7 + 1 - g(0) - ~ O -~p (59) 

which should be compared with a similar expression for the large -k limit 
of G(k, co) [Eq. (51)]. 

This brings us to the work of Kleinman (3a) and Langreth. (a~) 
Kleinman (3a) has obtained a result for the static local field correction G(k, 0) 
which also varies with k 2 for both small and large k, a result which was 
verified by Langreth. (a4~ An objection to the Kleinman-Langreth theories 
has been raised by Singwi et al., (a~'a6) who pointed out that a k 2 behavior 
of G(k, 0) for large k would lead to an unphysical result in that g(r) would 
have a 1/r singularity at the origin. However, their objection is based on the 
assumption that G(k, ~o) is independent of o~, and can therefore be only 
maintained for the static mean field approximations discussed in Appendix A. 

5. A CALCULATION OF G(k, ~o) 

In the first part of this section we follow to some extent the calculation 
of Toigo and Woodruff (TW), (15) who have used a method for decoupling 
the equation of motion for the density response function 2(k, t) which 
conserves the third frequency moment Ma(k) [cf. Eqs. (40)-(43)] in addition 
to M~(k). A general method of moment conserving approximations was 
previously introduced by Tahir-Kehli and Jarret. (av) At a key point in the 
calculation we employ a simple " t r i ck"  which leads to simpler formulas and 
show that a term neglected by Toigo and Woodruff because of the complexity 
of the formulas involved in fact leads to no additional contribution. The 
results we obtain will be seen to be simpler than those obtained by the 
latter authors, who restricted calculations to the static limit co = 0. 

We work with the particle-hole operator ho(q, k, t) defined by (6) 

h~(q, k, t) = a~(t)aq+k~(t) (60) 
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For k = 0 this is the operator for the number of particles with momentum 
hq and spin orientation a. The density fluctuation operator p(k, t) [(2b)] is 

p(k, t) = ~ ho(q, k, t) (61) 
q o  

The particle-hole operator obeys the exact equation of motion <6) 

0 
ih -~ ho(q, k, t) = [h~(q, k, t), H]  

= ho, o(q, k)h~(q,  k,  t )  

1 ~ v(q,)[aq+p(q,)aq+k_q,c, _ a~+~.~p(q')a.+k~] (62) 

where 

oJ0(q, k)  = wo(q + k)  - ~%(q) = (hq.k/m) + O~o(k ) 

is the excitation frequency for a free particle-hole pair. For brevity we have 
not indicated the time argument in some o f  the operators above; we shall 
often omit writing (t) after long expressions involving operators when the 
time argument is clear from the context. By summing both sides of (62) over 
qa we obtain the continuity equation for particle conservation, 

where 

aptK, O/at = - i k . j ( k ,  t) (63) 

j(k, t) = (h/m) ~ (q + �89 k, t) (64) 
q a  

is the current density fluctuation operator. 
Multiplying Eq. (62) by k.(q + k/2)/m and summing over qa, we obtain 

the equation 

i k . j ( k ,  t)  --- ~ [ k . j ( k ,  t) ,  H ]  

= ~ [hk.(q + �89 ' k, t) 
q a  m 

1 k . q  + , + , 
+ -~ ~ v ( q ' ) ~  [aq~p(q)aq+~_wo - aq+q,op(q )aq+ko] 

qq'o- 

(65) 
which expresses the continuity equation for the longitudinal current fluctua- 
tion k.j(k, t). This is the equation which goes into the derivation of  the 
third-moment sum rule M3(k), as seen by using Eq. (38b) with n = 3, m = 1. 
In obtaining the above equation we have used the fact that the sum over q 
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of the operators in the last square bracket vanishes identically. Equation (65) 
will be used below. 

Next we define the retarded response function 

~q~(k, t) = iO(t)(1/h)([ho(q, k, t ) , o ( - k ,  0)]) (66) 

in terms of  which the density-density response function 2(k, t) defined by 
(3) and (6) is given by 

2(k, t) = (l/f2) ~" 2qo(k, t) (67) 
Off 

From Eq. (62) we obtain the following equation for 2qo(k, t): 

~t 2qo(k, t) = - 3(t)([ho(q, k, 0), p ( - k ,  0)]) ih 

+ hcoo(q, k)2qo(k, t) + iO(t)~-~-~ ~ v(q') 
q '  

+ i + i • ([aqop(q)aq+k_wo(t) - aq+q,.p(q )aq+ko(t), p(--k, 0)]) 
(68) 

Now, the first term on the right of  (68) involves an equal time commutator ,  

+ ~ (69) [aq,aq+ko, p ( - k ) ]  = fiq~ - nq+ko 

where t~qo = a%aqo. Hence the exact equation of  motion (68) can be written 

[ih~-h~o0(q, k)]2q~(k, t ) 

= 3(t)[no(q + k) - no(q)] 

+ ~ v(q')2?d(q', k, t) 
(70) 

where no(q) = (hq~) is the average number of  particles of  momentum 
hq and spin ~r, and -<3~_, Xqo~q, k, t) is a three particle-hole response function 
defined as 

- ( 8 ) / - - t  Xqot.q, k, t -- t ') = 2iO(t -- t')2~3~"(q ', k, t -- t ' )  (71a) 

" ~ h  + / 
2~8~ (q,, k, t -- t ' )  = ([aqop(q)aq+k-qo(t) 

+ t 
- aq+r )aq+ko(t), p(--k, t')]) (71b) 

Taking the Fourier transform of  (70) with respect to time, we have 

h[w - w0(q, k) + i,]x,~o(k, ~o) = no(q + k) - no(q) 
1 + -~ ~ v(q')x~(q' , k, w) (72) 

q '  
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where the positive infinitesimal ~ is to serve as a reminder that we are dealing 
with retarded response functions. 

At this point we use the decoupling procedure of TW, ~ which is 
equivalent to making the following operator ansatz: 

~, v(q')[ag~p(q')aq+k_,,~ - a++,,op(q')aq+k~] = Aq~(k)p(k) (73) 
q" 

where Aq~(k) is a c-number function to be determined below. The above 
implies the following decoupling approximation for the corresponding 
response functions: 

( l /n )  ~ v(q')2~a~(q ', k, t) = Aq~(k)2(k, t) (74) 
q'  

where we have used the definitions (6) and (71). Inserting the Fourier 
transform of (74) into the last term on the right of (72), we obtain 

= + k) - no(q) Aq~(k)x(k, oJ) 
Xqo(k, oJ) h[no~ (q - wo(q, k) + ie) + h[co - wo(q, k) + iE] (75) 

Using (67), we then obtain 

1 ~ Aq~(k) (76a) 
x(k,  ,o) = Xo(k,  oO + x(k,  o~) E 6  . ,  - ~,o(q, k) + i .  

o r  

[ -1-' x(k, o,) = Xo(k, r 1 - ___1 ~ Aq~(k) (76b) 
hf~ qo oJ -- O)o(q, k) + ie 

where 

1 ~ n~(q + k) - no(q) (77) 
x0(k ,  ~o) = E ~  o~ - ,o0(q, k)  + i~ 

is of the form of a free-particle-type density-density response function 
corresponding to the true momentum distribution function n~(q). In order 
to perform calculations and obtain explicit formulas, we shall eventually 
replace n~(q) by the Fermi distribution n~)(q), so that Xo(k, ~o) will then 
describe the free-electron polarizability xo(k, o~). However, for the moment 
we continue to use n,(q) in the formulas. Comparison of (76b) with the 
general expression 

x(k, ~o) = xo(~, ~,) 
1 + Iv(k) + ~(k, w)]xo(k, ~o) (78) 

will then yield an approximation for the local field correction ~6(k, co) = 
- v ( ~ ) c , ( / r  o , ) .  
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The function Aq~(k) is to be chosen so that 

, -oo ~ ~ (q'' k, ~o) = Aqo(k) ~ ~ o~ x (k, o J) (79a) 

where x~a)"(q ', k, oJ) is the Fourier transform of the function defined in 
(71b). The above condition determining Aq,(k) can be rewritten as 

1 ~, v(q')(-i ~)2~3~"(q', k , t - t ' ) I t = t ,  = Aqo(k)(- i  ~--~,)2"(k,t-t')t=t, 
(79b) 

or, using the definitions (3) and (71) as well as the continuity equation (63), 

-~ v(q ) -~ ([aq%p(q')aq+k_q,o - %++q,oO(q')aq+ko, k.j(--k)])  

1 
-= A q o ( k ) ~  ([p(k), k . j ( - k ) ] )  = Aqo(k) pk2 

2m 
(79c) 

In the above equation the time argument of all the operators is the same, so 
that we have equal time commutators on both sides which can be evaluated. 
It is in choosing to differentiate both sides of (79b) with respect to t '  rather 
than t which is the " t r i ck"  we have alluded to above. For, by differentiating 
with respect to t in (79b) as did TW, the commutator on the left side of 
(79c) would be replaced by a much more complicated commutator involving 
four a + and four a operators, rather than the three a + and a operators 
occurring on the left of (79c). This prompted TW to neglect the interaction 
Hamiltonian in working out the commutators, due to the complexity involved.: 
However, because the local conservation law for the particle number, Eq. 
(63), is independent of the interaction between the particles, the interaction 
term neglected by TW (15) leads in fact to no additional contribution. 

Before evaluating Aqo(k) explicitly we now show that the TW decoupling 
(73), together with the condition (79) on Aqo(k), conserves the third-moment 
sum rule for x"(k, oJ), i.e., M3(k). Inserting the decoupling (73) into (65), 
the continuity equation for the longitudinal momentum operator is approxi- 
mated by 

q + l  2 �9 ~ . hk.( ~k)l t ~ k'j(k, t) ~ ~ ] no(q, k, t) 
q o  

+ 1 q~ _ ~  Aqo(k)p(k, t) (80) 
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Hence the commutator with k - j ( - k ,  t) gives 

h-~ i k.j(k, t), k . j ( - k ,  t) 

1 hk.( ]k) ([ho(q, k, t), k . j ( -k ,  t)]} 

+ ~ A,o(k)([p(k, t), k - j ( - k ,  t)]} (81a) 

However, because of (79c) the right side can be rewritten as 

h---~ I ~ [hk.(  �89 2 q~ L -+ ([ho(q, k, t), k- j ( -k ,  t)]} 

1 k.q 
+ fi 

q q , f f  m 

+ t + t • ([aq~p(q)aq+k-,r -- a.+~,~p(q )a,~+ko, k . j ( - k ) ] )  (81b) 
) 

which is in fact the exact expression for M 3 ( k )  obtained from (38b) and (65) 
The calculation of Aq~(k) amounts to calculating the equal time com- 

mutators 
[A(q), k - j ( - k ) ]  - [A(q + q'), k . j ( - k ) ]  (82) 

where A(q) is the operator [cf. Eq. (79c)] 
+ t .~(q) = aqop(q )aq+k-Wo (83) 

Using (64), we have 

hk-ql [.~(q), a+l~laql _ kol] - w0(k)[A(q), p ( -  k)] [.4(q), k - j ( - k ) ]  = ~ 
ql(T1 

(84) 
The above commutators can be worked out and lead to the result 

([A(q) - A(q + q'), k . j ( - k ) ] }  

fik-q] rno~ . = Coo(k) +---m--j[ c q ) -  no(q + k) + n o ( q +  k - q ' ) -  n ~ ( q - q ' ) ]  

hk.q' [no(q + k - q') - no(q - q')] 
m 

+ (p(q)(aq+k+Woa~+k~ -- aq+k~aq+~_q,~)}} 

+ hk.q'.. {<p(q, _ k)(a+ a,+k_w~, _ aq+q,oaq+ko))+ 
Fr/ 

(p(q)(aw~a q-  q,~ + t -- -- aq+ k+ a,~a,~+ j,o)}j (85) 
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In terms of the above quantities, the expression for Aqo(k), (79c), becomes 

Aqo(k) Ok~ 1 = h--~ ~'~ v(q')([A(q) - ,4(q + q'), k - j ( - k ) ] )  (86) 
q" 

At this point, because of the unknown two-particle density matrices of the 
type ' + (p(q)aq~aq_q,~), etc., occurring on the right-hand side of (85) it is 
necessary to introduce an additional approximation. In order to carry the 
calculation further we therefore resort to the usual Hartree-Fock factoriza- 
tion of the type 

(al+ a2+ a3a4) = (al+ a~)(a2+ a3) - (al+ a3)(a2+ a~) (87a) 

Thus one has, for example, 

! .p 
(p(q)aqoaq_q,o) = ( N )  3q,,on,,(q) + no(q - q')[1 - no(q)] (87b) 

When this factorization is employed in the terms on the right-hand side of 
(85) there occurs a huge cancellation of terms, with the result 

Aqo(k) Pk-----2 = Pk2 v(k)[no(q + k) - n~(q)] 
m rn 

+ [n~(q + k) - n~(q)] 

• -~ ~ v(q') [no(q + q') - n~(q + k + q')] (88) 
q" 

The first term on the right is precisely the RPA term, which when substituted 
into (76) leads immediately to the RPA expression for x(k, w). The result 
(88) is much simpler than that of TW. (ls) Thus far the above expression for 
Aqo(k) applies to all potentials with a Fourier transform v(k). For the Coulomb 
potential we can write the result (88) as 

A~(k) = -v(k)[no(q + k) - no(q)][1 - f ( q ,  k)] (89) 

where the dimensionless quanti tyf(q,  k) is given by 

1 q,~ k.q-- [n~(q + q') - n~(q + k + q')] (90) f ( q , k )  =P-~  ' o q,2 

Substituting (89) into the expression occurring in (76b) and replacing 
no(q) by the Fermi distribution n~~ one identifies 

1 ~ Aqo(k) 
h--~ o~ - OJo(q, k) + iE = -v(k)x~ o~)[1 - G(k, w)] (91) 

where 

a(k, oa) = P(k, oJ) 
Xo(k, oO (92) 
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1 ~,  n~>(q + k) - n~>(q)f(q, P (k, CO) k) ~-~ ~ ~ : - ~ , ~ q ~  u 

1 ~ nT(q + �89 - nT(q - �89 
- hs ~ ~o -- ~ ~q/m))~  & J(q, k) (93) 

f(q, k) = f(O>(q _ �89 k) 

1 k .q '  

(94) 

It is useful to note thatf(q,  k) = f(q, - k )  = f ( - q ,  k) = f ( - q ,  - k ) .  We note 
that P(k, ~o) is analytic in the upper half co plane, as is also xol(k, ~o); hence 
the local field correction G(k, co) as given by (92)-(94) is also analytic there, 
in agreement with the general analytic properties of the function ~(k, z) 
discussed in Section 3. 

From (92) we obtain for the real and imaginary parts of G(k, co~ 

" P"Xo' G'(k, o~) P'Xo' + P"zo G"(k, co) = - P'xo (95) 
- I x o ( k ,  co)? ' IXo(k, co)? 

where 

(96) 
p ( +  dco' P"(k, co') 

P'(k, 03) (97) 
3 - - o o  97" r t - -  09  

The expressions for xo(k, co) and Xo'(k, co) are the same as those for P"(k, co) 
and P'(k, co) with f(q, k) replaced by unity. Both P"(k, o)) and xo(k, co) are 
odd functions of co, while P'(k, co) and Xo'(k, co) are even functions of co. 

Before embarking on an explicit calculation of P"(k, co) and P'(k, co) it 
Js useful to define the frequency moments of P'(k,  co): 

~ ( k )  = ~ ~ __dco ~ P " ( L  co) 
d --GO "/T 

1 ]~q.k n - hf~ ~ [n~ ' (q  + k ) _  n ~ > ( q -  k ) ] f (q ,  k ) ( =  ) (98) 

Only the odd n moments  survive. In terms of P,~(k) one obtains for the 
asymptotic expansions for large o~ of P(k,  co) and G(k, co): 

1 P~(k) + + ... (99) P(k, co) ~ - Z~ 

P~(k) [ (Pa/P~)-(M<a~176 
a(k,  ~)  ~ ~ 1 + , ~  + ... (1oo) 
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where the moments M~~ are given by the expressions (38)-(40) with 
v(r) = 0, or alternatively by (98) with f(q,  k) replaced by unity. The first 
term on the right of (100) represents the quantity G(k, ~ )  within the approxi- 
mation under consideration, i.e., 

Pl(k) m 
G(k, oo) - Mf' (k)  - p-~ Pl(k) (101) 

the exact expression being given by (48). Let us also note the expression for 
the static limit o~ - 0 of G(k, r 

G(k, O) = P(k,  O) = P'(k,  O) =_ P_l(k)  (102) 
xo(k, O) Xo(k) xo(k) 

We shall come back to the relations (100)-(102) shortly. 
One can obtain explicit expressions for the functions f (q,  k) and 

P"(k, oJ) at zero temperature. In this case n~)(q) is a step function; i.e., 
n~)(q) = 1 for q ~< kr,  zero otherwise. One obtains 

kF2 q (1 ~ )  q + k r ,  - ~ I n  [q[  w(q) = I + q2 2kF ~ q = 

(103a) 

f (q,  k + 0 )  = - l ( d~q " k .q '  k V n<~ 
pJ(2~r) 3 ~ " ,, , ,-~ + q ' )  

- 16k~ (~.~)2 l - - - q 2  + q \ 2q2  2kr2 1 In 

+ 1 + - ~  + ~- 1 2kr2 2-~J in q----2~F j (103b) 

When (103a) is substituted into (96) one finds after a lengthy calculation 
(for details see Appendix C) the following expression for P"(k, oJ): For 
0 < k ~< 2kF and 0 ~< o~ ~< kvF -- O~o(k) 

[1 + (~o/~F)l ~ 

It will be useful to note also the limiting form of the above expression for 
k -+ 0. In this limit one has 
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+ w 

1 - - -  4 - 2  ~----~ In  
CoF/ \ Cot 

m2Co f Co 
321rh3 k 8 1 n - - -  1 6 1 n 2  CoF 

coF/ \ CoF 2~-~F 2 In 

- 4 - 2 In CoP 2~'FF 2 

[1 -  (CO/O~)]1'2 +__ I i} 
[1 (Co/co.)] ~'2 1 

[1 + (Co/Cor)l "2 + 1[ 

[ 1 -  (co/coj]l/2 + i i  } 

where  coF = coo(kr) = hk f /2m.  
F o r  all k a n d  [kvF -- Coo(k)[ ~< Co ~< kvF + Coo(k), 

P"(k, Co) 

- ~  2k - 1 + 4 1 n  

(104a) 

32~h z + + - 1 + 41n  + - 1 

+ ~  + + 4 1 n  - 8  w k l n 2  

+ oJ + k 1 +  co 4 + 2 c o t  2-~-~F 2 

• lnl[1 + (~/~%.)]~'~ + 1 [ 
[1 + (co/co~)p~ l 

+ ~ 1 + 2 k~~ 2k~ - 3 kvF 2kr  In wo(k) - - kv r  

3 I + 2  w + _ + In - -  
2 3 + coo(k) kvF 

(104b) 

P"(k, ~,) = o for kv~ + coo(k) < 
= 0  for  0 <~ co <~ coo(k) - kvv, 

k t> 2kr  (104c) 

The  func t i on  P"(k, w) is s h o wn  in Figs, 1-3 as a f unc t i on  o f  oJ for  several  
values  o f  k. 
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~ co) 

0.2 F 

0.1 

o o.s 1.o 1.s ~ /~5 ~ i ~  

- o.o~ 

Fig. 1. The  func t ions  P"(k, co) and  x'~(k, ~o) vs. o~]kv~, for  k = 3kF. The  vertical scale is 
in  uni ts  of  mk~J~r2h2; the  s a m e  is to be u n d e r s t o o d  for Figs.  2 and  3. 

0.4 

P"(k~) \ k = 2 kF 

o[ o~s 1 ' . o  ~ _ ~  O ) /k v7 

-0-05 

Fig. 2. P " (k ,  w) and  x'~(k, ~) vs. o,]kvF for  k = 2kv. 
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o_8[ 

61 

k=k, 

O.2 

Pt~(k,0)) 

-0_I. 

Fig. 3. P"(k, ~o) and x'~(k, o0 vs. w/kvF for k = kr. 

The expression for the real part P'(k, oJ) for arbitrary k and given by 
(97) has not been determined. It will contain integrals of the type given in 
Appendix D, where the expression obtained for oJ = 0, i.e., for the quantity 
P(k, O) = P_l(k), is given. However, we can obtain P(k, w) explicitly in the 
limit k --> 0. First we observe that the expression for P"(k, ~) [Eq. (96)] in 
the limit k ~ 0 becomes 

2~rC d~q ~o, a[~ hq.k] 
P"(k,~o) = - -EJ(2-~)~k,%n~ (q)f(q,k) - m j 

=~kFf  d3q 8[w hq.-k_] a(q - k~)k.qf(q, k) - m j (1o5) 

When the angular integration over the 3 function is carried out and the 
form (103b) for f(q,  k) is substituted one finds the simple result 

P"(k, co)= 3m2c~ ( a'~ ) 
167rh3kF 2 1 kZ---~F 2 , IoJ] ~< kvF (106) 

= O, kvF < I~ol 

which is also obtained from the expansion of (104a) for k << 2kF. The 
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complex quantity P(k,  co) defined by (93) in the limit k --~ 0 is thus found to 
be given by 

P(k,  oJ) = (~~ d___~' P"(k, o~) 
3 - oo q7" O Y  ~ 0 3  w i E 

= 4~r2h2kF ~.! 2kZvF 2 4kvF 1 k~-vF ~ In --kvF + 

(107) 

where the principal branch of the logarithm is to be understood. From this 
we obtain for the real part 

P'(~, o,) ~1 1 - (108) : 2k2vF2 k~v~ 2 In 4kvF kvr J 

The functions (106) and (108) are shown in Fig. 4 as a function of oJ for 
k/kF = 0.1. Although the general expression for P'(k,  oJ) has not been 
obtained, the behavior of P'(k ,  o.,) and G'(k, ~) for large oJ and arbitrary k is 
given by the asymptotic expansions (99) and (100). 

To facilitate comparison with the expressions (104)-(108), we shall 
recall here the corresponding expressions for the functions X'~(k, ~) and 
Xo'(k, o~), which also enter into the expression (95) for the local field correc- 
tion G(k, ~o): 

m2r 
x~(k, o~) = 2~rhak for 0 < k <~ 2kF, 0 <~ o., <<. kvF -- Coo(k) 

k 2 
= 4 - Y ~  

[kv~ - O~o(k)l < ~ .< kv~ + ~o(k) 

= 0  for kvF + o~o(k) <~ a, 

= 0  for 0 ~< oJ ~< ~o0(k ) - k v F ,  k >1 2kF (109) 

x o ' ( k , o ~ ) = 2 ~  l + ~  l -  + In - - oJ + wo(k) kvr, 

2k 1 -  k-v~ 2k-; I n -  -- (110) co - ~oo(k ) kvr, J 

For w = 0 one obtains from (110) the static susceptibility of the noninteract- 
ing gas (7 = k/kF): 

2,,2h2 1 + ~  1 -  In ~ - - 2 ]  (111) 

which enters into the expression (102) for the static limit of the local field 
correction. The functions (109) and (110) are shown in Fig. 5 for the value 
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p "(k,w) 

k/k F = 0.1 

1.0 1!5 2.0 

-1"01 

P'(k,w) 

Fig. 4. The functions P"(k, w) and P'(k, co) defined by Eqs. (106) and (108) vs. co/kv~. 
for k = 0.1k~. The vertical scale is in units of mkF[=2h 2 • l0 -~. 

2.O 

~o(k,co) 

Fig. 5. The functions X'~(k, co) and xo'(k, w) vs. ~o/kv~ for k = 0,1k~. The vertical scale 
is in units of mkFJ~r~h ~. 
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k/kF = 0.1. When the expressions (106) and (108)-(110) are substituted 
in (95) one obtains explicitly the functions G'(k, ~) and G"(k, o~) for 
k << 2kr; the latter are plotted in Fig. 6 as a function of ~ for the value 
k/k~, = 0.1. 

Having obtained an explicit expression, (104), for P"(k, oJ), one can 
now calculate the moments Pl(k) and P_ l(k) which enter, respectively, the 
expressions for G(k, oo) [Eq. (101)] and G(k, 0) [Eq. (102)]. The results are 
given in Appendix D and are plotted in Fig. 7. It is found that both G(k, oo) 
and its derivative with respect to k are continuous at k = 2kF. G(k, 0) is 
continuous at k = 2kF but its slope has a logarithmic singularity there. 
G(k, 0) has a peak at a k value slightly less than 2kF and tends for large 
k to the limit 2/33 aa) The limiting expressions for G(k, oo) and G(k, O) 
indicated in the figure follow from the expressions given in Appendix D. 
In particular, it is worthwhile to point out explicitly the values for 
small k: 

lim G(k, oo) = (3/20)k2/kF 2 =_ 7~F)k2/kF 2 (112) 
k ~ 0  

lim G(k, O) = �88 2 =- ~/o~r'k2/kF 2 (113) 
k - * 0  

Hence the theory presented in this section leads to the value ~'o = �88 for the 
compressibility factor [cf. Eqs. (30) and (31)], which is the same as obtained 

3s 

i 

2.C 

1.0 

0 1 

k/k~= =-0.1 

Fig. 6. The functions G"(k, ~o) and G'(k, oJ) vs. ,o/kv~, for k = 0.1kF. The vertical scale 
is in units of 10 -3. 
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from the ground state energy in HF approximation, as shown in Appendix B. 
The value 70 = �88 has also been obtained by TW, (15) Hedin and Lundqvist, (7~ 
and Vashishta and Singwi/~6) 

At this point it must be pointed out that the above results for G(k, co) 
and G(k, 0) are not consistent for large k with the general properties discussed 
in Section 4 [Eqs. (51) and (59)]. This is due to the replacement of the 
momentum distribution no(q) by the unit step function, which results in 
<KE) = <KE)o = 3cF~ It represents a serious failure for all calculations 
which employ the Fermi distribution (corresponding to the use of free 
particle propagators) instead of the true momentum distribution (corre- 
sponding to the renormalized propagator or true one-particle Green's 
function). (2~'39) A calculation of the momentum distribution of the electrons 
in a metal has recently been made by Overhauser/4~ 

The quantity G(k, oo) enters directly into the dispersion relation for the 
plasma oscillations [cf. Eqs. (56a)-(56c)]. Thus the above theory predicts 

3 
~.~(~) = %~[I - G(~, ~ ) ]  + 3 ~ v ~  + "' 

=toy2[1 3k2  ] 3  
20kF 2 + ... + -~k2v~ ~ + ... (l14a) 

o r  

9 k 2 3 k 2 
~(~)  = ~ 1 + lo  ~ 40 k~ ~ + ""] 

= ~% 1 + ]0 - 2 ~ k~---~ + "'" (114b) 

where r~ is the dimensionless parameter defined by kF = (9~r/4)l13/r,ao =- 
]/ar~ao, ao being the Bohr radius. The last term in (l14b) represents the 
correction to the RPA result. This correction has already been obtained by 
Nozi6res and Pines (4~) (where it has been termed the extra exchange frequency 
shift of the plasmons), Kanazawa et aL, (42) and Pathak and Vashishta (43) 
(cf. also Appendix A). 

Due to the approximations we have made in obtaining G(k, oJ), it comes 
as no surprise that we find no damping of the long-wavelength plasma 
oscillations. For the determination of the "cutoff"  wave number kc where 
the plasmons are damped out one could employ the expression for G'(k, ~o) 
given by (95), (I06), and (108). The value obtained for kc is smaller than the 
one found in RPA. 
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6. A F O R M U L A  FOR THE G R O U N D  STATE ENERGY 

In this brief section we discuss a formula for the ground state energy 
corresponding to the approximations embodied by Eqs. (92)-(108), Since 
the local field correction G(k, oJ) as given by Eqs. (92)-(94) is independent of 
the coupling strength e ~, we can employ the ground state energy theorem of 
Pines and Nozi6res. (6) By means of this theorem the Gell-Mann and 
Brueckner (44) expression for the ground state energy was shown to be 
equivalent to the result obtained in the RPA. A different looking but equiv- 
alent version of the ground state energy theorem was derived independently 
and applied by Hubbard (1~ to the simple static local field correction given in 
the second row of  Table I (Appendix A). 

Following Pines and Noziares, (6~ one has for the correlation energy per 
particle (cf. also Appendix B) 

Ec~ = ~P f (2~) 3dak 20 fez d-'~- 1)'z(k) f :  ~d~ [X"~(k, ~ ) -  x~(k, o~)] 

=hfa k v~.(k) 
2p2 Jo 

x --~. Im 1 + v~(k)[1 - G(k, co)]xo(k, oJ) - xo(k, ~o) 

(115) 

where va(k) = 4rrA/kL Employing the steps outlined by Pines, C*) this can be 
rewritten as 

v~(k) 
(2zr) 3 do " 

fo~ dw[ 1 + va(k)[1 G(k, iw)]xo(k, iw) - X~ 
x - -  Xo(k, iw) 

- -o0  7T 

The integration over the coupling parameter then yields the expression 

Eco~r(p) = Tpp J (2~r) a _ ~ T 1 -- G(k, iw) 

• In [1 + v(k)(1 - G(k, iw)xo(k, iw)] - v(k)xo(k, iw)) 

Setting G(k, iw)= 0, one 
energy given by PN. (6~ 

(116) 

(117) 

recovers the RPA formula for the correlation 
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Following these authors, we now introduce the dimensionless quantities 

x = k l k ~ ,  u = wlkv~ 
v(k)xo(k , iw) = (arJTrxZ)Qx(u) (118) 
v(k)P(k,  iw) = (ar,/~rxOP~(u) 

where the real quantity P~(u) is defined by 

Px(u) = d3qf (q  + �89 x 
q l < l  oo 

with ~cf. Eq. (103a)] 

dt e i t~ exp[- [ t / (q .x  + }x2)] 

(119) 

1 
+ x) 1 + (q + x)------ ~ 

[q+x[[  1 1 ]2 [ [q+xl+  1 ) 
2 (q +x) 2 In ]q +x]--  1 

3 x.q{l+ I (1 - 1 2 16 ~ - - q  ~ )  ln] q +  1 } (12o) 

The quantity Qx(u) is defined the same way as Px(u) but with f(q + �89 x) 
replaced by unity. We note that for x << 1 the functions Qx(u) and P~(u) 
are given by 

Qx(u) = 4~-R(u), R(u) = 1 - u arctan(1/u) 
Px(u) = rrxaP(u), P(u) = 1 + }u 2 - }(1 + u2)u arctan(1/u) 

(121) 
where the last expression was obtained from (107). 

Expressed in Rydbergs, the formula (117) for the correlation energy 
per particle then reads 

Eoo~dr3 = d x  x ~ J _  du 1 

x ln [l  + ar----L~ (Qx(u) - Px(u))] - ar---~ ~rXZ (122) 

Here we shall not pursue the calculation of the correlation energy on the 
basis of this expression any further. Such a calculation would in fact be 
lengthy. It would entail finding first a more suitable general expression for 
the quantity P(k, ion) or Px(u) valid for arbitrary x and u. Only the static 
limit P(k,  0) has been obtained explicitly and is given in Appendix D; the 
latter itself contains integrals which in general must be evaluated numerically. 
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A calculation of the correlation energy using an expression similar to 
(117) but with a simple, static local field correction was first carried out by 
Hubbard. (1~ Using the expression for G(k) given in the second row of Table [, 
Hubbard has calculated the correlation energy in the range of metallic 
densities 2 ~< rs ~< 5. 

APPENDIX A: STATIC MEAN FIELD A P P R O X I M A T I O N S  

Here we briefly review a large class of approximations which have been 
devised in the past for calculating e(k, co), of which the RPA is the simplest 
case. These can all be termed mean field approximations (MFA) since they 
are characterized by an expression for x(k, z) of the form 

XMF(k, Z) ---- xo(k, z) 
1 + r z) (A.1) 

where r is an effective static mean field potential, which is written in the 
form 

r = v(k)[1 - G(k)] (A.2) 

G(k) being the static local field correction. The form (A.1) results from the 
general expression (14) if the complex potential r z) is approximated by 
the real, frequency-independent potential -v(k)G(k). The G(k) in (A.2) is 
usually identified with the static limit G(k, 0), although in Ref. 43, the 
G(k) is the same as the infinite-frequency limit G(k, oo) given in Eq. (48) 
(if the difference between (KE} and (KE}0 is neglected). 

A list of expressions for G(k) and corresponding references is given in 
Table I. Note that all of these expressions have in common the fact that for 
large k, G(k) tends toward a constant (which may depend on the density), 
in contrast to the general properties discussed in Section 4. This property of 
the G(k) in MFA, as pointed out by Singwi et aL, (3~ results from the assump- 
tion that the local field correction is independent of ~o and from the corre- 
sponding form of the spectral function )t"(k, r in MFA: 

Xo(k, ~o) (A.3) 
X~F(k, oJ) = [1 + ~b(k)Xo'(k, o~)] 2 + [r o~)] 2 

This should be compared with the general expression for X"(k, w) following 
from (14): 

x;(k, ~o) - r ~o)[xo(k, ~)12 
x"(k, ~o) = {1 + [v(k) + r - r 2 + {r + [v(k) + r 2 

(A.4) 

where r ~o) = -v(k)G'(k, o~) and r oJ) = -v(k)G"(k, r 
Many of the expressions for G(k) given in Table I can be found plotted 

in Ref. 43 as a function of k for various rs. Note that in some of these 
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expressions G(k) is given as a functional of the static structure factor S(q), 
or pair correlation function g(r). Let us discuss in particular the form 
derived by Singwi et al. (STLS) <35) and its extensions by Shaw, (14' Schneider, (25) 
and Vashishta and Singwi (VS). ~26) Since the STLS form for G(k) is just a 
simpler version of the more general expression obtained by Schneider (25) 
and VS, (26) we start with the latter. Their expression for G(k) is obtained by 
taking for the effective mean field potential r [the Fourier transform of 
r the form [compare Eqs. (26a) and (26b)] 

Vr = Vv(r)[l + ap(~/~p)]g(r) (A.5) 
= v ~ ( r )  + {g( r )  - 1 + ap[~g(~)/~p]}Vv(r) 

In this manner the short-range correlations are taken into account via 
g(r), while the long-range correlations are described as in RPA [the latter 
corresponds to taking g(r) = 1]. If the density derivative ofg(r)  is neglected, 
one obtains the STLS (35) expression for Vr In Schneider's theory the 
parameter a has the "classical" value �89 (the meaning of this will become 
clear shortly) while in the theory of VS, I > a >/�89 the upper bound being 
subject to some uncertainty. For numerical calculation VS have chosen a to 
be 2. 

From (A.5) we obtain by Fourier transforming and comparing with 
(A.2) 

a(k) = - k  d r {g ( r ) -  1 + ap[~g(r)/~p]}j~(kr) 
( A . 6 a )  

jl(x) = (sin x - x cos x)/x 2 

Alternatively, G(k) can be written in terms of S(q) as 

I f  d3q k . q (  G(k) = - ~  (27r)a q2 (7 - a ) [ S ( k - q ) -  11 + ap 
OS(k_~p- q)}. 

(A.6b) 
A simpler way of writing the above expressions is 

k G(k )=  ( l  + apv@p)GsTLS() 

where 

f; GsTLs(k) = - k  dr [g(r) - l]jl(kr) 

if daq k.q - ~ (2~.)3 q~ [ S ( k - q ) -  1] 

k 2 _ q2 k + q 
- dq q2[S(q) - -2-s In 4 fo "['§ ] 

(A.6c) 

(A.7) 
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is the form of  the local field correction obtained by STLS. (aS~ From the above 
relations one finds that the quantity 7 defined for the static MFA as 

lim G ( k )  = 7k2 /kF  2 (A.8) 
k-*0 

is given by 

~___ 1 2f0~~ 7 - - x k F  d r ( g ( r ) -  1 + ap[~g(r) /Op]}r  (A.9a) 

fo = -(1/2k~) dq {(1 - a ) [ S ( q )  - 1] + ap[~S(q) f l3p]}  (A.9b) 

Comparison with (36) shows that for a = �89 we obtain the expression for 
70 valid in the classical limit where ( K E )  = (KE)0.  By taking a value of 
a > �89 VS (26~ attempted to take into account the fact that for the ground 
state system ( K E ) ) ( K E ) 0 .  Note that the above expression for 7 can be 
written as 

where P = 7STLS is a dimensionless measure of the average potential energy 

zr k_v2( ~ 
F = - 2e2k-~v(V)  = 3 Jo d r r [ g ( r )  - l] (A.11a) 

'fo =- - ~ d q [ S ( q )  - 1] (A.11b) 

The quantity F enters directly into the calculation of  the ground state 
energy (or free energy, at finite temperature) via the well-known integration 
over the coupling strength e 2 (cf. Appendix B). 

In the limit k -+ oo one obtains from Eqs. (A.6a)-(A.6c) 

lira G ( k )  = 1 - g(O) - ap[Og(O)/Op] (A.12) 
~ o 9  

In the literature (6'26~ it has usually been found and assumed that g(0) has 
some finite (positive) value, the reasoning being that even though particles of 
parallel spin are forbidden by the exclusion principle to be found right next 
to each other, particles of opposite spin are not thus restricted, leading to a 
total g(0) > 0. Since g(0) is proportional to the probability of finding two 
electrons at zero separation and since the Coulomb repulsion between the 
latter would be infinite, it seems not unreasonable to suppose that g(0) 
should be zero regardless of the spin of the two particles. This is in fact 
indicated by recent Monte Carlo type computations on the electron gas. (~5~ 
Moreover, the results of these computations indicate that ~g(r ) /~r  also 

per particle, defined by 
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vanishes at r = 0. These results are also consistent with a relation obtained 
recently by Kimball(16): 

Or ,=o = g(0) (A.13) 

where ao is the Bohr radius. Thus the right side of (A.12) should reduce to 
the value unity. 

As far as the various expressions and values for y given in Table I are 
concerned, the basic relation to be kept in mind is the one relating ~, to the 
compressibility ratio. In the MFA this ratio is 

K~~ = 1 - ~(kgr /kF 2) (A.14) 

The values of the compressibility ratio obtained from :y via the limiting 
form for k - +  0 of the static local field corrections given in Table I are 
usually different from those calculated from the second derivative of the 
ground state energy. Only in the self-consistent calculation of Vashishta and 
Singwi (26~ do the two results almost coincide in the entire metallic density 
range with the parameter a = 3. It should also be noted that in the MFA 
theories the quantity 7o (which is related to the compressibility) and the 
quantity 7~ [which occurs in the plasma dispersion, Eq. (56b)] have the 
same value, y. Thus the MFA's lead to the following dispersion relation in 
the long-wavelength limit k ~ 0 and at zero temperature: 

= 1 + - z + " ' "  

9 2ar~ ~,(r~) - -  + . . .  (A.15) 
= o~p 1 + 10 ~- k i t  

As seen from Eqs. (112) and (113), y(o ur) and ~ r )  differ by 107o, which is 
probably a considerable underestimate of the true difference between ~'o and 
~ in the range of metallic densities 2 ~< rs ~< 6. It is easily verified that for 
a metal of density corresponding to rs ~_ 3, a 10~ difference between 7'o 
and W o leads to a similar difference in the correction to the RPA term, 
9k2/ lOk~T.  Thus one cannot hope to achieve consistency between values of 
the compressibility and the plasma dispersion using MFA theories. 

Finally, it is perhaps of interest to point out that in MFA the plasma 
oscillations are undamped for k values up to some critical wave number 
kc. At kc it first becomes possible for a plasmon to decay into a particle- 
hole pair so that a damping of the plasmon sets in (the so-called Landau 
damping, discussed in detail in Ref. 6). The value of k~ is given by the 
solution of  the equations 

r -= k~vF + OJo(k~) (A.16) 

1 + v(k~)[1 - G(k~)]Xo'[k~, o~(k~)] = 0 (A.17) 



Theory of the Local Field Correction in an Electron Gas 75 

From (110) one finds (r~ = k/kv)  

xo[k, kv~+~o(k)]=~ 1 -  I + In ~ +  (A.18) 

so that ko is determined by the equation (~o = k~/kF) 

This equation was first considered by Ferrell (4~ and Brout et al. (s,47~ in the 
RPA where G(k) =- 0. The effect of  G(k) is to decrease the critical wave 
number from its RPA value; the larger the value of y, the smaller the value 
of k~. The correlations in the particle motions as described by the local field 
correction G(k) thus act to reduce the number of  collective degrees of  freedom 
characteristic of the plasma modes, a result to be expected. 

Yasuhara (49~ has recently investigated short-range correlations in the 
electron gas from a diagrammatic analysis of  perturbation theory. He has 
shown that an infinite sum of electron-electron ladder diagrams is indispens- 
able for the short-range correlation at metallic densities. His results are also 
in the form of the static mean field approximation, with the local field 
correction G(k) calculated from electron-electron ladder diagrams. 

A P P E N D I X  B: R E L A T I O N S  BETWEEN G R O U N D  STATE 
ENERGY,  V I R I A L  T H E O R E M ,  A N D  C O M P R E S S I B I L I T Y  

First we recall that for the ground state of  the noninteracting system 

(KE)o  3 ( 0 )  = 2 . ( 0 ) ~  = 3 = F  = ~6v , Po ~~v p, 1/pK(O) 2~(o) (B.I) 

where ~(r ~ = h 2 k f / 2 m ,  kr a = 3rr2p. The ground state energy per particle of  
the interacting system E(p) can be written as (6~ 

E(p) = ( K E )  + ( V )  = (KE)o  + - - ( V ) a  (B.2) 

Here (V)~ represents the average potential energy per particle for a system 
with coupling parameter A. The integration is carried out at constant density 
p. The above ground state energy theorem is a consequence of the relation (6~ 

~E(o, a)/a~ = (I/A)< V)~ (B.3) 

We now show that the relations (B.2) and (B.3) imply the equivalence 
of the virial form for the pressure p and the density derivative of  the ground 
state rag): 

pip = p ~)E(p)/~p = 2 ( K E )  + �89 
= ~E(p)  - 1< v }  

which implies 

~(e) <Ke>o ~p2;3[ ~e dp'(e')-5;3<V>o, - -  - -  , / m  

(B.4a) 

(B.4b) 
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The differentiation and integration are here carried out at constant coupling 
strength e 2. 

To see this, it is sufficient to express the ground state energy in rydbergs 
(1 Ry = e~/2ao = me4/2h 2 = 13.60 eV), i.e., to write 

E(p, e 2) -- ~(rs) Ry (B.5) 

where rs is the dimensionless parameter defined by &rrsaao3/3 = l/p and 
ao = h/me 2 is the Bohr radius. One has 

e 2 Oe ~ - - a o  ~ = r~ ~r~' - 3 p  ~pp = --kF ~ = r~-~r ~ (B.6) 

where the left side refers to differentiations at constant density p, and the 
right side refers to differentiations at constant e ~. With < V) also expressed 
in rydbergs, (B.3), (B.5), and (B.6) imply 

2e(r~) + r~ 0~@~) = <V) (B.7a) 

which is the same as (B.4a), with p/p expressed in units of Ry: 

3p &(r~) 
- 2e(r,) + <V) (B.7b) - -  r s  

p �9 

Hence if the ground state energy is obtained from an expression for the 
average potential energy per particle { V) via integration over the coupling 
parameter, or equivalently, via integration over r~ 

~(r,) = (1/rs~) [2.210 + f f "x<V>xdx]  (B.8) 

the pressure obtained from the virial theorem is the same as obtained from 
differentiation of the ground state energy with respect to r~. 

What has been said about the pressure is equally true about the com- 
pressibility. When expressed in rydbergs, the equivalent expressions derived 
from the virial theorem and ground state energy, respectively, read 

1 ~p 10 5 1 c~<V) (B.9a) 

= 1 [  r~2 a%(r~) 9 ar2 2 r ~ ]  (B.9b) 

as can be easily verified using (B.7b). 
It is convenient to restate the above relations in terms of the dimension- 

less quantities yo and P defined by Eqs. (34) and (A.1 I). First we rewrite the 
potential energy per particle as 

<V) = -- 2e2k-------~F F = 4 P(r~) Ry (B.10) 
~T "/TO~ r s 
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where a = (4/9~r) lla. Equation (B.8) can be rewritten as 

1 2.210 F ( x ) d x  (B.11) r = rs--- 5 

On the other hand, the ratio of  the co:npressibilities of the noninteracting 
and interacting systems K(~ is given in terms of the quantity 70. From 
Eq. (34) we have 

K ~~ [kgT] 1 4ars 7o(r~) (B. 12) 
K - 

Now 7{o v), the contribution from the potential energy, is given by [Eq. (36)] 

7y)(rs) = ~F(r~) -- +r~[~I'(rs)/c~r~] (B. 13) 

and 7co xE), the contribution from the kinetic energy, can be written as 

9"(~ = 4 1 -- 5 r~ (<KE) - <KE>o) (B.14a) 

which can be rewritten, (26) using (B.2) and (B.11), 

5 [F(r~) - 1 [~" F ( x ) d x ] +  1 ~F(r~) (B.14b) 
r176 = - 5 r~Jo -j r~ ~rs 

Thus the contribution to the compressibility ratio from the kinetic energy 
has also been expressed in terms of F(rs). Adding (B.13) and (B.14b), we 
obtain 

1 or'(r3 5 [r~ 
7o(r~) = - r(r,) + g ~r---~-- + 3r~ jo r(x)  dx (B.15) 

Equations (B. 12) and (B. 15) give the same value for the compressibility ratio 
as the one obtained from the ground state energy via (B.9b) (PN) (6) 

K `~ 1 [ 
K = -6 a2ys2[ rs2 Ors 2 2r~--~r~ ] (B.16) 

In connection with the above discussion it is also useful to recall the 
so-called Ferrell theorem (~8) on the ground state energy as a function of  
rs 

((82/Ors2)[rs2E(rs)] <<. 0 (S.17a) 

or equivalently, in terms of F(r~), using (B.10) and (B.11), 

~F(r~)/~r~ >i 0 (S.17b) 

requiring that F(r~) be an increasing function of  r~. In addition, it should 
be recalled that P(r~) is positive and is bounded below by the Hartree-Fock 
value FIeF = 3/8 (see below). The properties of F(r~) are further discussed 
in Ref. 26. 
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The ground state energy per particle E(p) is usually written in terms of  
the Hartree-Fock value E~F(p) and correlation energy E . . . .  (p): 

where 

E ( v )  = E M e )  + Eoor~(e) (13.18) 

or  

energy are 

cqEnr(p ) 2 e~ ~ eZkv PH___Z = p . . . .  (B.21) 
p 8 0 5 4~r 

1 8paF 2 (o) e2kr (B.22a) 
pK~r = 8p = -j ~r 3~ 

K r176 ~r~ 
= 1 - -  (B.22b)  

Knv 7r 

thus giving the value 7o = 7~o r~F) = 1/4 for the compressibility factor of the 
HF ground state. 

Finally, the total pressure and compressibility ratio, written in terms of 
HF and correlation contributions and expressed in rydbergs, are 

P = Plt.._...__F _]_ 3 e" . . . .  (rs) + r(rs) --  (B.23)  

K (~ ~rs 1 2 2[- z ~% .. . .  (r~) 2r~ (B.24) 
K = 1 - - g - + ~ a r ~ [ r ~  8r2 ~ ] 

or, in terms of the compressibility factor ~o(r~) [cf. (B. 12) and (B.15)] 

1 1. ~F(Fs) A fr~ 

(B.25)  

2.210 0.916 
= - -  R y  ( B . 1 9 )  Ear(p) = <KE>o + <V>0 rs2 rs 

The value of (V)o corresponds to F = FHF = 3/8 in (B.10). 
The correlation energy per particle is defined by 

f"~a,~l-<V>,, < r___.>o.1 
Eoo~/p)-=jo [ A - e2 ] 

- %or~(r~) Ry (B.20) 

The pressure and compressibility corresponding to the H F  ground state 
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A P P E N D I X  C: C A L C U L A T I O N  OF T H E  Q U A N T I T Y  P"(k, oJ) 

At T = 0 the expression (96) for P"(k, oJ) becomes 

f a3q  {O[k 2 (q + k)2 ] _  O[kF2 _ (q k)2]} 

where g = 2 is the spin degeneracy and the expression (103) forf(q, k) is to 
be substituted. The angular integration involving the 3 function can be 
carried out, using 

f~ [ hqk ] h@k (mh_~k)[ Iraqi] dx 3 o~ x h(x) = h 0 q - (C.2) 
- 1  m 

for an arbitrary function h(x). We shall take ~o > 0. Thus q.k in the above 
integral is replaced by mo)/h and we have under the integral sign 

( k )  2 k 2 moJ q2 ] k I a+)1/2 
q +  = q2 + __4_ + _.h__ = + a + ,  q + ~  = ( q 2 +  (c.3) 

q - -  = + 4 h =- + a _ ,  q _  = ( q 2  + a_)112 

Using the abbreviations 

k 2 m6o 
q + 2 = kF2 _ c~_ = k~, 2 - -~- + -~- 

q_2 = k F 2 _ a +  = k F  2 k 2 m o )  m o )  

4 h '  qo = h'-~ (C.4) 

we then have 

P"(k,w) = gm (~o 47rh2k,j ~ q dq O(q - qo)[O(q 2_ - q2) _ O(q+2 _ q2)] 

(3(~+ + �88 [ k2 
•  i6~d 1+q2+~+ 
x In (q2 + c,+)lt2 + kF ] 

(q2 + c~+)112 kF 

kF 2 +3(~-+�88 ~) l+q~ 
16kF 2 + a_ 

[(q2 + ~_).2 k~ 

(q2 +2k~C~+)lJ2 (1 

(q2 +2kFa-)lI2 ( 1 

q2 + a+] 

kF2 )2 
q2+a_ 

(c.5) 
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N o w  the integrand of(C.5)  is nonvanishing only forqo < q a n d q _  < q < q+.  
There are two cases to consider:  

(i) k < 2kF. Here  we can have contr ibut ions to the integral if  qo < q -  < 

q < q+ corresponding to 0 < co < kvF -- coo(k), or if  q_ < qo < q < q+ cor- 
responding to kvF -- ~o(k)  < oJ < kvF + coo(k). 

(ii) k > 2kF. In  this case O(q_ 2 - q2) = O(kF2 _ �88 _ (ma,/h) - q2) = 

0 and we must  have qo < q < q+ corresponding to O~o(k) - kvr, < co < 

OJo(k) + kvF.  

Thus  for k < 2k~ and 0 < o~ < kvF -- O~o(k) 

gm fq + 

while for  ]kvF - OJo(k)[ <<. o~ <~ kvF + ~oo(k) and all k, 

gm fa + 

where { } is the quant i ty  in the curly brackets  o f  (C.5). 
Let t ing Q1 = (q2 + a+)~/2 and Q2 = (q2 + a_ ) l~ ,  one has 

3(a+ + �88 s) r k~ -2 Q1 1 - 
qdq{} = ~6-Ej J Q~ dQ~ 1 + Q12 2kF Q 2) 

•  Qlq-kF]Q~ kF 

3(a_ + lk2) f kF 2 Q2 1 - 
+ ~6-~F~ j Q2 dQ2 1 + Q2 ~ 2kp  Q2 2] 

which are identical integrals, except that  the upper  and  lower limits are 
different. The  limits on the Q1 integral are 

o) 11/2 
QI+ = kF 1 + - -  

eoF] 
corresponding to q = q+ 

Q1- ~ kF q - q_ (C.9) 

m [w + wo(k)] q = qo 01o = ys  
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while those on the Q2 integral are 

Q2+ = kF corresponding to q = q+ 

Q 2 - = k F ( 1  ~ t1'2 - - -  q = q _  ( C . 1 0 )  
t-oF] 

m I~ ~ _ ~ o ( k ) l  q = qo Q~o = 

The integrals in (C.8) are tedious but elementary and lead to the results 
(104a)-(104c). 

APPENDIX D: THE QUANTITIES G(k, oo) AND G(k,O) 

Here we give the expressions for the above quantities corresponding to 
the theory of Section 5 [as embodied by the expressions (104a)-(104c) for 
P"(k, ~o)]. First we give the values of the moments P_~(k), Pa(k), and Pa(k) 
for small k. In this case, using (106), one finds for k ~ 0 

mk2 3pk~ P~(k) 3(kvr)2 
P_ l(k) = ~ ,  P~(k) = 20mkF2" Pa(k) = "7 (.D. 1) 

Thus, using (100), (106), and (40), one obtains for large oJ and k --* 0 

G(k, oJ),,, 20kF 23k2 I 1 - - 6  ( - ~ ) 2  + -..] (D.2) 

The expression for G(k, oo) is 

G(k, oo) = Pl(k)m/pk 2 (D.3) 

This can be evaluated for arbitrary k by computing the first frequency 
moment of the function P"(k, o9) given by (104). Alternatively, we can obtain 
G(k, oe) by substituting the ground state static form factor of the free Fermi 
gas, 

3k /c a 
So(k) = 4kF 16kr a' 0 < k ~< 2k~. (D.4) 

= 1, 2kF ~< k 

into the integral I(k) defined by Eq. (42), realizing that G(k, oo) is also given by 

G(k, oo) = - (1/wp2)I(k) (D.5) 

within the approximation considered. For, the basic ingredients of the 
calculation presented in Section 5 have been a decoupling which conserves 
the first and third frequency moments Ml(k) and Ma(k), followed by the 
HF factorization (87). Hence the result (D.3) must be the same as (D.5) in 
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which the HFfactorizationappears via the above expression for So(k). The 
result, then, obtained either way is 

608 142~ ~ 274 
945 315 315 - -  + ~ ' q 4 ( 2 - ~ 8 )  ln[ 1 -  4~1 

( 32 24 2V2 + ~ )  1 I V + 2 )  (D.6) 
+ - 63V ----z + 35 5 ~ln ~ _ ~  j 

In the limit k -+ 0 one obtains 

limk_.o G(k, m) = ~2 1 - -f~ \105 - 2 In + ... 

while for k -+ 0% (D.6) takes the form 

l i m G ( k , m ) =  I I  6 ( ~ ) )  ~ ~ I - ~-~ + o 

(D.7) 

(D.8) 

These results are consistent with the limits stated in Eqs. (44) and (45) when 
it is recalled that (V)0 = - 3e2kr/4rr and go(0) = 1/2. 

We now consider the static limit given by 

G(k, O) = V(k, O)/xo(k, O) = P-l(k)/Xo(k) (D.9) 

where 

P_l(k) = f=  dw P"(k, oJ) (D.10) 
- o o  "r[ Ok 

The calculation of the inverse first frequency moment of the function 
P"(k, w) defined in (104) is very lengthy and tedious but straightforward and 
leads to the following results (~1 = k/kv): 

For k < 2kv 

1 4 
+ ( - 8  + 2~1- 2~7~ + ~ ~?~)In I 1 ~5 I 

( I 41) + 4 1 n 2 + 4 1 n ~  + l n  1 - ~  ~ln 

+ N + 4 - 6 ~ + ~  In ~ - - 2 1  

+ ~ + 3 + 1 3 ~ - i 3  ,? 2 
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5+ i7 :7+73  :73 l +  tl-:71 

J_+ I1-:71 

- 2:7 d x ~ l n l x  2 -  1[ + d x ~ - - l n l x  2 -  1 
_~ x + {:7 ~, x �89 

+ ~  1 + 2 48] [ J1_"  x----4-~ In x -  1 

, i , + , 1 ,  - d x  ~ x  - �89 In 7-2--f_ 1 ] ) (D. 1 la) 

For k > 2kF 

P - l ( k ) =  16~r.2h 2/. -5 +3-0 + ~ l n  1 - 

+ - 7  + 5 + ~ : 7 1 n  

i:7+21 + 4:7 (In 2 + In :7) In 

f l  1 [In ix = - 11 + In [(x + :7)= - ~11 - 2:7 dXx---4~2~ 
- 1  

e , [ x+, I } + ~  1 +  2 ~ d x ~  In - 1 x+�89 ~ 1:7 + x--7 
(D.11b) 

The functions G(k, 0) and G(k, oo) are shown in Fig. 7. For k near 2kF one 
finds from (D.l la)  and (D.1 lb) (see below) (0 < k << 1) 

P_I 2kF 1 + = ~  - ] - ~  + - f ~ l n 2 + - - ~ -  

_+ 6Aln k + O(&, A 2 In A)) (D.12) 

Thus P_~(k) is continuous at k = 2kr but its slope has a logarithmic sin- 
gularity there. A similar behavior is known for the function )0(k) given by 
Eq. (111). Near 21oF the latter behaves as 

Xo 2kv 1 + = ~  1 + - ~ I n A  + O(k, ASlnA) (D.13) 
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Fig. 7. The static limit G(k, 0) and high-frequency limit G(k, ~) of the local field correc- 
tion plotted vs. k/kF. The indicated behavior for small and large k follows from the 
expressions given in Appendix D. 

Hence one obtains for the static local field correction for k near 2k~, the 
result 

G 2 k F  I + , 0  = - ~ + ~ l n 2 + - ~ -  

[ 13 161n2 _ _~] Aln A} 
+ 6 + 1--3 - 1--3 

_~ 0.791 + 0.354 A In A (D.  14) 

To see how the result  (D.12) is ob ta ined ,  we first use integrat ion by 
par t s  on  some o f  the integrals  occurr ing in (D. I  l a ) :  

f 
l+r/ 

dx --in[x+ 11 = In2 (~7 + 2) + In22- ln21n192 - 41 

(D.15) 
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N o w  f o r ~ = 2 -  A, 0 <  2~<< 1, o n e h a s  

f -1 1 t 'l-A 1 

/2 

= 1n22 

x + l + ~  

In 2 - y + �88 ~ 
e~ '+  1 

rr 2 1 
12 ~ A In ZX + O(&, ZX 2, zX 2 In A) 

(D.16) 

Similarly, one has 

a X x - - 4 ~  in Ix - 11 = dx 1. I x -  II 
-n l+a  X + 1 -- �89 

fA ~ l n 2  - y  
/2 (1 - �88  1 

= - l n 2 1 n  - - ~  + ~ A l n A  

+ O(zX, zX 2, zX 2 In 29 (D. 17) 

where we have used the fact that  In A can be written as 

f;  , l n A = - -  dY eA + V _ 1 

Similar manipulat ions can be used for the integrals occurring in (D.11b) to 
show that  for ~ = 2 + zX, 0 < A << 1, one obtains the result (D.12) where 
the sign o f  the A In A term is reversed. 
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